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We consider the axisymmetric thin liquid film formed on a horizontally spinning 
disk. The asymptotic structure of the steady film is obtained, after which a theory 
is developed to describe the evolution of localized disturbances imposed upon the 
steady film. It is shown that this can lead to the propagation of large gradients in the 
film. Moreover, it is found that under certain conditions the steady film can become 
unstable. 

1. Introduction 
The generation of thin, free-surface, liquid films is of practical importance to many 

processes arising in the field of chemical engineering. Particular examples are to be 
found in most heat and mass transfer and coating processes. One method of 
generating a thin-film fluid flow is to allow the fluid to run down a uniform plane 
which is inclined at an angle to the horizontal. This allows the formation of a steady 
flowing film of uniform thickness. Much experimental work has been devoted to the 
study of such films (see, for example, Kirkbride 1934, Friedman & Miller 1941, 
Grimley 1945, Kapitza & Kapitza 1949, Dukler & Bergelin 1952, Binnie 1959 and 
Tailby & Portalski 1962). For non-vertical inclinations, the uniform film is seen to be 
stable at  sufficiently low flow rates, but there is an observed critical flow rate after 
which there is a tendency for the film to diverge from uniform conditions and develop 
into a periodic progressing wave. For vertical slopes, the uniform film is observed to 
be unstable at  all flow rates. 

The theoretical aspects of two-dimensional thin-film flows down uniform inclined 
planes have received much attention. A simple exact solution of the NavierStokes 
equations which satisfies all the boundary conditions is available to describe the 
uniform film flow. The temporal stability of the uniform flow when subject to small 
amplitude disturbances has been considered by Benjamin (1957). This analysis 
demonstrates that the stability of the uniform film depends primarily on the 
Reynolds number R, = &/v, where & is the volume flux in the film and v is the 
kinematic viscosity of the fluid. In the ‘thin-film’ limit the exact condition for 
instability was obtained as R, > 6 cot 8, with 8 being the angle of inclination of the 
plane with the horizontal. 

An alternative approach enabling the study of finite amplitude disturbances to the 
uniform film was given by Benney (1966). This reproduced the linearized stability 
condition of Benjamin (1957) and examined the possibility of weakly nonlinear 
equilibration of the film near conditions of neutral stability. The weakly nonlinear 
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theory has also been considered by Gjevik (1970, 1971), who discusses the evolution 
of both spatially and temporally varying surface wave trains. 

At low Reynolds numbers for which the uniform films are stable, permanent 
travelling waves have been discussed by Smith (1972). These waves represent 
transitional states which accommodate a change in the flow rate generating the film. 
Smith (1967, 1969) has also considered steady low-Reynolds-number films flowing 
down inclined planes containing small surface deformations. 

Here we consider the theoretical aspects of a different method of generating thin- 
film fluid flows: the axisymmetric film generated on a horizontal disk by spinning. 
The film is generated by the drawing of fluid onto the spinning disk through a small 
aperture of height a a t  the bottom of a central, cylindrical, reservoir of radius 1. We 
consider the flow in the ‘thin film ’ regime when E = a/Z % 1, with both a and 1 small 
in comparison to the radius of the disk. The steady film is obtained, and is shown to 
consist of two regions. There is a thin region of lengthscale O ( E )  next to the aperture 
in which the film adjusts rapidly from its inlet conditions. Thereafter the film 
thickness gradually falls with the flow being maintained primarily through a balance 
between centrifugal force and viscous stress. 

An important dimensionless parameter governing the stability of the steady films 
is shown to be the modified film Reynolds number Re = SZ2Q,/2ngv when SZ is the 
angular speed of the disk, QT is the total volume flux generating the film, g is the 
acceleration due to gravity and v is the kinematic viscosity of the fluid. For Re 4 1 
a theory is developed for unsteady film flows. For small-amplitude disturbances it is 
shown that the steady state is temporally stable according to a linearized theory. For 
disturbances of finite amplitude nonlinear effects become significant leading to the 
possible development of forward facing ‘fronts ’ of thickness O(B),  and the conditions 
for the formation of such fronts are obtained. In the long time, these fronts decay and 
the film remains stable. The unsteady response of the film to changes in the driving 
volume flux is also considered. An increase in volume flux causes front formation, 
while a decrease does not. 

Finally the temporal stability of the steady film is considered a t  larger values of 
the Reynolds number, Re. It is found that the film can become unstable when 
Re = O( 1). The criterion for instability is given by Re > %, which is analogous to that 
obtained by Benjamin (1957) for thin films flowing down inclined planes. It is 
expected that when the Reynolds number is such that this criterion is satisfied the 
film will develop into a propagating ‘wavy’ form. 

- 

2. Equations of motion and boundary conditions 
We consider the axisymmetric flow of a thin film of an incompressible viscous 

liquid on a rotating, horizontal disk. The liquid is injected onto the disk at  a specified 
flow rate through a small gap of height a at the bottom of a cylindrical reservoir of 
radius 1 situated at the centre of the disk. With the origin 0 at the centre of the disk, 
we use the cylindrical polar coordinates ( r ,  8, z )  in a frame of reference rotating with 
the disk, where r measures radial distance from the centre of the disk, 8 is the angle 
from some fixed radial line in the disk and z measures distance vertically upwards. 
The coordinates and the geometry of the situation are shown in figure 1. Within this 
rotating frame of reference the equations of motion are the Navier-Stokes equations 
with the inclusion of terms accounting for the centripetal and Coriolis forces (see, for 
example, Batchelor 1974). To complete the problem, boundary conditions must be 
specified on the free surface of the liquid, on the disk surface and at  the inlet. The 
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FIGURE 1. The coordinate system. 

boundary conditions a t  the free surface, z = D(r , t ) ,  are the usual kinematic and 
stress-free conditions, while we must have no slip of liquid on the disk surface, 
z = 0. At the inlet, r = a, we suppose that the liquid is injected through the gap as a 
plug flow with a volume flux Q per unit length of perimeter (i.e. QT = 2xlQ). For 
unsteady flows further initial conditions must be specified. 

We make the further assumption that the gap thickness of the reservoir, a, is much 
smaller than the radius 1, which is in turn much smaller than the radius of the disk. 
Typical lengthscales for the flow in the horizontal and vertical directions are I and a, 
respectively. With a 4 I ,  the leading-order balance in the radial momentum equation 
is between the viscous stress, the centripetal force and the pressure gradient. This 
results in a velocity scale U ,  in the radial direction and a pressure scale Po given by 
U ,  = Q21a2/v and Po = pQ212. The velocity scales in the azimuthal and vertical 
directions are then deduced from the azimuthal momentum and continuity equations 
as V, = UoSZa2/v and Wo = aUo/l respectively. Finally, a timescale for the flow is 
taken as To = l /U0.  

After using these scales to introduce appropriate dimensionless variables, the 
equations of motion become 

i a  aw 
r ar aZ --(ru)+-= 0, 
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where u , v , w  are the components of fluid velocity in the r , B  and z directions, 
respectively, and p is the fluid pressure. The three independent dimensionless 
parameters are E = all ,  the Reynolds number Re = U , a / v ,  and a Froude number 
F = QzZ/g. To complete the problem we have the following dimensionless boundary 
conditions, 

ah ah 
-+u--w = 0, 
at ar (5 )  

a2h 
-s3T- ar2 [ l + e 2  r$yr = 0 onz = h(r , t ) ,  r > 1, (7) 

u = v = w = O  onz=O, r > l ,  (8) 

u=cr, v = O ,  w = O ,  h = l  o n r = l  w i t h O < z < l .  (9) 

Here h = D/a ,  T = y/Q2Za2 (with y the coefficient of surface tension of the liquid) is 
a Weber number and cr = Q/Uoa .  

We consider solutions of (1)-(9) when 6 4 1 with Re = o(1) and F,a ,T  = O(1) as 
B + 0. It should be noted here that sRe = EP2,  where E = v/Qa2 is the Ekman number 
for the flow. Thus we are considering flows with E b 1, which puts the restriction 
i2 4 v/a2 on the speed of rotation of the disk. 

3. The steady film 

(1)-(9) (with a/at = 0) as asymptotic expansions in the form 
Here we obtain the form of the steady film as s+O. We look for solutions of 

h=h,(r )+ah, (r )+  ... ass+O wi thr=O(l ) ,  (104 

with similar expansions for u, v, w and p .  

obtain at  leading order the following equations : 
On substituting the expansions into ( 1)-(4) and boundary conditions (5)-(9) we 
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which are to be solved together with the leading-order boundary conditions 

uo--wo ah0 = 0, 
ar 

Po = 0, 

on z = ho(r) with r > 1 ; 

(18) 

uo=cr, v o = w o = O ,  h o = l  a t r = l ,  O c z c l .  (19) 

uo = vo = wo = 0 on z = 0 with r > 1; 

The solutions of equations (lob)-( 13) which satisfy conditions (15)-( 18) are readily 
obtained as 

(20) 

POk,  2) = 0, 

uO(r, z )  = 3z[2h0(r)  -21, 

vo(r, z )  = &rZ[4Z2h0(r) -z3-8h:(r)]  

dh 
dr 

wo(r,  z )  = ~ z 3 - ~ z 2 r ~ - z 2 h o ( r ) .  

Substitution from (20) into condition (14) now provides an ordinary differential 
equation for ho(r), namely, 

dh, 2 
-+-h -0. 
dr 3r O -  

The general solution of (21) is given by 

ho(r) = A r f ,  (22) 

where A is a constant. It remains to satisfy the conditions (19) at  r = 1. From (20) 
and (22) it is clear that the constant A cannot be chosen to satisfy all the conditions 
(19). This problem has arisen because, at leading order, the highest derivatives with 
respect to r occurring in the full equations (2)-(4) have been neglected. We conclude 
that expansions of the form (10a) become non-uniform as r + 1. To obtain expansions 
valid when r - 1 we introduce an inner region, with the expansions (10a) now viewed 
as outer expansions valid when r is O(1). The unknown constant A arising in 
expression (22) is then determined by matching the outer expansions (1Oa) with 
expansions valid in the inner region. 

In the inner region, r = 1 + o( 1) and z = O( 1) as 8 + 0, and we must retain at leading 
order all the highest derivatives with respect to r in equations (2)-(4) to enable all the 
conditions at r = 1 to be satisfied. The appropriate scalings for the inner region are 
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then readily obtained as r = 1 + O(a) ,  h,  u, v, z = 0(1 ) ,  w = O(s-l) and p = O(s) .  Thus 
we introduce the scaled inner variables 4, and p defined by 

w = sw, p = s-'p. 

After writing the full equations and boundary conditions (1)-(9) in terms of these 
inner variables we look for solutions in the inner region as asymptotic expansions in 
the form 

h = ho(r) + . . . as s, Re + 0, 

together with similar expansions for u, v, w and p .  
A t  leading-order (1)  becomes 

which can be integrated once to give 

dh, 
dr dr f o  a, dz - a,(?, 6,) -+ a,, = 0. 

Also, boundary condition ( 5 )  is, at  leading order, 

dh 
dr 

a o ~ - w o  = 0, 

and when (26) is substituted into (25) and the condition that 4, = u, wo = 0 at 
P = 1 is applied, we obtain 

rh. 
a,dz = U. Jo"  (27) 

We then evaluate (27) as F+ co, using the matching condition, from (20), that h,+A, 
ao-f&(2A-z) as F +  00. A simple integration then gives the constant A as 

A = (3~) : .  (28) 

The main purpose of introducing the inner region was to enable the determination 
of the unknown constant arising in the outer solutions (20), (22). This has now been 
achieved. It should be noted that the full problem in the inner region is a free-surface 
Stokes flow which can be reduced to the solution of a biharmonic equation by 
introducing a stream function. Due to the complexity of the nonlinear free-surface 
conditions, analytical solutions to this type of problem are not available, although 
the application of boundary-integral techniques to obtain numerical solutions for 
plane, free-surface Stokes flows has been considered by Kelmanson & Ingham 
(1984). 

Thus for E -4 1, the asymptotic structure of the film has two regions. In the thin 
inner region, of radial lengthscale O(s) ,  the film suffers rapid adjustments from its 
inlet conditions. The film thickness changes from 1 to (3u)4, the radial velocity at the 
free surface changes from to i(3a)t and the azimuthal velocity a t  the free surface 
changes from zero to -33a4)i. After this rapid adjustment the film develops when 
r is O(1) according to the outer solutions (20) and (22). As s+O a uniform 
approximation to the film can therefore be obtained from the leading-order outer 
solutions (20) and (22) together with the following discontinuity a t  r = 1, 

[h] = ( 3 ~ ) 4 - 1 ,  (29) 
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to replace the boundary conditions (19). From (29) we see that the behaviour 
of the film close to the inlet depends on the parameter a. With a > $  there is a 
step up in film thickness at  the inlet, and with c < a step down. If CT = $, i.e. 
QT/2x1 = Q21a3/3v, the flow rate at the inlet is the same as the flow required for a 
balance between centripetal and viscous forces for a film of thickness a at  radius I ,  
and hence the film emerges from the inlet with this thickness without an initial 
adjustment of height in the inner region. 

It is also important to note that the theory does not necessarily require Re = o(1). 
The outer solutions remain the same at leading order when Re is O(1). The only 
modification for Re of O(1) is in the inner region, where the leading-order problem 
becomes a plane, free-surface flow governed by the full Navier-Stokes equations, 
rather than a Stokes problem. 

4. The asymptotic structure of the unsteady film 
We now consider the development of disturbances imposed upon the steady film 

discussed in the previous section. The disturbance can be of two types: a local 
disturbance imposed upon the film away from the inlet together with possible 
imposed flux changes at the inlet. Flux changes at the inlet are accommodated by 
setting a = a(t) in the boundary condition (9), while the effects on the film of a local 
disturbance are considered by imposing the following initial conditions, 

u(t = 0)  = U ( r , z ) ,  

v(t = 0 )  = V ( r , z ) ,  

h(t = 0) = H ( r ) .  

(304  

(30b) 

(304 

Here U, V and H are bounded functions of r and z which satisfy the boundary 
conditions (9) at  r = 1. The initial form of w cannot be prescribed independently of 
conditions (30) due to the continuity equation (1). An integration of this equation at 
t = 0 together with (30) leads to 

w ( t = O )  =-AA[r lU( r , s )ds ] .  r dr 

As E + 0, the asymptotic structure of the solution of equations (1)-(4) subject to 
boundary conditions (5)-(9) and initial conditions (30) is similar to that of the steady 
film. When t = 0(1),  two regions are required to obtain a uniform approximation to 
the film in r > 1, namely 

region I :  r , z , t  = O(l ) ,  
region 11: r = 1 +O(s), z, t = O(1). 

In  both the above regions we lose at leading order the time derivatives of u, v and 
w in equations (2)-(4). Consequently the expansions obtained in I and I1 are unable 
to satisfy the conditions (30) at t = 0. Thus we must conclude that the expansions in 
both I and I1 become non-uniform as t + O .  Uniform expansions for t < 1 are 
obtained by introducing the additional regions I11 and I V  with the following 
scalings, 

region 111: r , z  = 0(1), t = O(sRe), 
region IV: r = I+O(s) ,  z = O ( l ) ,  t = O(sRe). 
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The asymptotic matching of regions II-IV with region I then determines uniquely 
the solution in this main region. 

We begin in region I by looking for a solution of equations (1)-(4) as asymptotic 
expansions in the form 

(31) 

with similar expansions for u, v, w and p .  On substituting from (31) into (1)-(4) and 
expanding we again obtain the leading-order equations as (lob)-( 13). As noted 
earlier, the solution of (lob)-( 13) will not be able to accommodate all the conditions 
(30) and (9) imposed a t  t = 0 and r = 1 respectively. Consequently we attempt to 
apply only conditions (5)-(8), which become at leading order 

h = ho(r, t )  + Ehl(r, t )  + . . . , 

ah, ah, 
-+u,--w, = 0 
at ar 

on z = ha, 

(33) 

The solution of equations (10b)-(13) which satisfies conditions (32b) and (33) is the 
same as that obtained for the steady film given in (20) except that now ha = ho(r, t )  
is also a function oft. On substituting for u, and w, from (20) into condition (32a) we 
obtain the equation determining ha, namely, 

u, = vo = wo on z = 0. 

It is now clear that u,, v,, w, as given by (20) with ha determined through (34) 
cannot satisfy all of the conditions (30) and (9) imposed a t  t = 0 and r = 1. To 
obtain the appropriate conditions to be satisfied by the solution of (34), and hence 
complete the leading-order problem in region I, we must introduce the further 
regions II-IV. 

We consider first region I1 which is introduced because of the non-uniformity that 
arises in I as r + l  when t = O(1). The scalings in this region are the same as those 
of the inner region for the steady film. Thus we introduce the scaled variables P ,  w, 
p as defined previously. The conditions to  be applied in this region are (5)-(9), 
together with matching to I as P +  co, t = O(1) and IV as t -+ 0, P = O( 1) .  Equations 
(1)-(4) together with conditions (5)-(9) are written in terms of P ,  w and p ,  after which 
we look for a solution in I1 of the form 

h = ho(P, t )  + . . . as 6, Re -+ 0, (35) 

with similar expansions for u, v, w and p .  
At leading order we find that the problem in I1 which determines a,, @,, w,, pa  and 

ha is the same as that obtained for the inner region of the steady film (with v = a(t)). 
As with the steady film the leading-order problem in I1 is a Stokes-type problem 

which is analytically intractable. However, i t  is the matching to I which is of primary 
importance, as this determines the boundary conditions to be applied to the solution 
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of (34) at r = 1. We are again fortunate in being able to obtain this condition without 
obtaining a full solution to the Stokes problem. We first match expansions (35) in 11 
as F-+ 00 with expansions (31) in I as r -+ 1. This, on using (20) ,  gives the following 
far-field conditions for the Stokes problem, 

(36a)  w, t )  + hO(L 4, 

as F +  00. In  the same way as for the steady film, we can also show from (24) ,  (25)  and 
(26) that 

(37) 4,(~, z, t )  dz = ~ ( t ) ,  

throughout region 11. Finally we evaluate (37) as ?=+ 00 using (36a, b). On performing 
the integration this determines the required boundary condition for I as 

(38) 

To proceed further in region I1 a numerical solution of the Stokes problem must 
be considered. We do not pursue this here, since our primary objective has already 
been achieved in obtaining condition (38). 

The non-uniformity arising in region I as t -+ 0 with r = O( 1) leads to the inability 
of the solution in I to satisfy all of the initial conditions (30). To overcome this, we 
must introduce region I11 with timescale t = O(eRe). This scale is chosen to retain a t  
leading order the appropriate time derivatives in equations (1)-(4) to enable all of 
(30) to be satisfied. The asymptotic matching of the expansions in I and 111 then 
determines the condition to be satisfied by the solution of (34) when t = 0. We 
introduce the scaled time E = t/sRe so that i = O( 1) in 111. Equations (1)-(4) are now 
written in terms of i and we look for solutions in 111 as asymptotic expansions of the 

ho( 1, t )  = [3cr(t)]f. 

form, 

with similar expansions for u, v, w and p. 
The leading-order problem is readily solved, to give 

i o ( r ,  i) = H ( r ) ,  

00 1 2  2 

6,(r,z,fl = T?;rz(4H(r)~~-z ' -88H(r)~)+ x [An(r)-2iBn(r)]  exp [ - 'niia i ] + n ( z ) *  
n-0 
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t 

t = O  

I I 
I I1 

r =  ~ + O ( E )  1 
u, u, r = O(1) I 
w = O(E-1) 

r ,  t ,  u, u, w,  P = O(1) 

r ,  u, u, w , p  = O(1), t = O(eRe) 

r =  1 

FIQURE 2. The asymptotic regions I-IV in the ( T ,  t)-plane. 

r 

Here $n are the orthonormal eigenfunctions 

4 2  (n+i)nz 
H ’  Hs 

$,(z) = 7 sin 

and the Fourier coefficients A, and B, are given by 

A,(r) = l(r) [ V ( r ,  z )  - +z(4Hz2 - z3 - 8H3)] $,(z) dz, 

B,(r) = [ U ( r , z ) - + z ( 2 H ( r ) - z ) ]  $,(z)dz. s%”’ 
We now match expansions (39) as ;+ 00 with expansions (31) as t + O .  From (20 )  
and (4Ob-e) it is clear that the matching of u, v, w and p is automatic. The matching 
of h then leads to 

which provides the appropriate initial condition to be satisfied by the solution of (34). 
The solution in region I is now uniquely determined through (34) together with 
conditions (38) and (41). Before studying the solution of this problem, for 
completeness we first consider the remainder of the asymptotic structure of the 
film. 

The structure is completed by the introduction of region IV when t + 1 and 
( r -  1) 4 1. This accommodates the non-uniformities in regions I1 and I11 as t + 0 and 
r +  1 respectively. The appropriate scalings for this region are found to be 

r = l + O ( s ) ,  t = O(sRe), p = O(s), u ,v  = O ( l ) ,  w = O ( c ’ ) .  

At leading order in IV we obtain a time-dependent Stokes problem subject to 
boundary conditions on P = 0, z = 0, z = h, initial conditions at  t = 0, together with 

4 l ( r ,  0) = W r ) ,  (41) 
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matching conditions with I1 as f +  00 (P = O(1)) and I11 as P +  00 (i = O(1)). Further 
details of this region are not pursued as it is passive, i.e. information from 1-111 is 
passed into IV  through the matching conditions. 

Again it should be noted that the asymptotic structure of this section holds when 
Re = 0(1), with the leading-order problems in I and I11 being unchanged, while those 
in I1 and I V  become full Navier-Stokes rather than Stokes problems. The asymptotic 
regions I-IV are illustrated schematically in the (r, t)-plane in figure 2. 

In the remainder of the paper attention is restricted to the solution of the problem 
in region I. 

5. The solution in region I 

5.1. The initial-boundary-value problem 
In this section we obtain the solution, h,,(r,t), of (34) subject to the initial and 
boundary conditions (41) and (38). It is assumed that both a(t)(t 2 0) and H ( r )  
( r  2 1) are positive, bounded functions with H(1) = [3a(0)$, H ( r ) + O  as r +  00. 

It is convenient f i s t  to make the transformations 

x = logr, $ = hi. (42) 

In terms of x and $, (34) becomes 

whilst conditions (41) and (38) may be written as 

$(x, 0) = @(x) (x 2 01, 

$(O,  t) = A2(t) (t 2 01, 

where Q(x) = H(eZ) and A(t) = [3a(t)]$. The solution of (43) subject to (44) can be 
obtained in implicit form via the method of characteristics. 

We consider the curve in x, t 2 0 defined by 

Upon this curve (43) reduces to the ordinary differential equation 

Since 9 > 0 for all x, t 2 0 we note from (45) that the characteristic curves, x(t) are 
monotone increasing functions oft. For a characteristic curve entering x, t > 0 via the 
x-axis, (45) and (46) are solved subject to x(0) = 5, $ ( E ,  0) = G2(E), which leads to the 
following implicit form of the solution: 

on the curves 
x+(t) = E+%log[$CP([)t+l], 
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for all positive values of the parameter 6. The solution is completed by considering 
the characteristic curves entering x, t > 0 via the t-axis. Equations (45) and (46) must 
be integrated subject to x(7 )  = 0, $(O,  7 )  = A2(7) ,  after which we obtain 

$ = [# ( t -7 )  + A ( T ) - ~ ] - ' ,  

on the curves x-( t )  = a log [#A2(7) (t  - 7 )  + 11, 

for all positive values of the parameter 7 .  

The solution in x, t > 0 ,  defined implicitly in (47) and (48), remains single valued 
provided no characteristic curves (47 b )  and (48 6 )  intersect within this region. We 
consider this case first. 

5.1.1. N o  characteristic intersection 

The solution remains single-valued for all t > 0, with the characteristic curve 
x,(t)  = a log [p2(0) t + 13 forming a dividing curve between information propagating 
due to boundary and initial conditions. For x < x J t )  the solution is determined by 
the boundary condition through (48), while for x > x,(t)  the solution is determined 
by the initial condition through (47). In terms of the radial variable, this transition 
point occurs at  

and we see that the effects of the initial conditions are 'swept away' with speed 
+,( t )  = G2(0) [l + F 2 ( O )  t1-i. 

5.1.2. Characteristic intersection 
If either of the family of characteristic curves defined by (47b) and (48b) have 

intersections in x, t > 0, then a t  each such point the solution is multiple valued. We 
now examine the conditions under which characteristic intersection and hence 
multiple-valued solutions can occur. We assume for the moment that A ( t )  and H ( r )  
are at least once differentiable. Now suppose that characteristic intersection does 
occur and let t ,  be the minimum value of t at which intersection occurs (i.e. for 
0 < t < t, the solution is single-valued). Since the characteristic intersection at 
t = t ,  is the first it is easily deduced that it must occur between neighbouring 
characteristics. A characteristic from the family (47 b )  intersects its neighbour at 
t = t:(f[) defined by dx+/dC I (t  = t:) = 0.  After differentiating (47 b)  we obtain 

r , ( t )  = (1  + g P ( O )  t ) i ,  

Thus, from (49), the set of characteristics (47b) intersect in x , t  > 0 if and only if 
there exists a value of 5 > 0, say go, a t  which 

[G'(Eo) +W(EO)l < 0. (50) 

When (50) is satisfied, the time a t  which intersection first occurs on this set of 
characteristics is given by 

Similarly, neighbouring characteristics from the family (48b) intersect at t = t;(7) 
defined by dx-/d~(t  = t ; )  = 0, which leads to 

t;(7) = 7+- 
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Hence, using (48b) and (52), characteristics from this family intersect in x, t > 0 if 
and only if there exists a value of 7 > 0, say 7,, at which 

A’(7,) > 0. (53) 

When (53) is satisfied the minimum intersection time for the characteristic family 
(48b) is given by 

(54) 

where S = (7: A’(T) > O}. After writing (50) in terms of H, the above results are most 
easily summarized in the following : 

Result ( i )  The solution of (34) in ( r -  l), t > 0 subject t o  the initial and boundary 
conditions (41) and (38) becomes multiple valued in t > t ,  if and only if there exists 
an r ,  > 1 such that 

or a to > 0 such that 

When only (55) is satisfied t B  = ti, when only (56) is satisfied t B  = t ; ;  when both 
are satisfied t ,  = min(ti,t;). 

5.2. Discontinuous solutions and discontinuity structure 
The above result establishes necessary and sufficient conditions for the appearance 
in finite time of multiple-valued solutions in region I. Since we expect that the 
solution of the full equations (1)-(9) will remain single valued in ( r -  l),  t > 0 for any 
E >  0, the appearance of multiple-valued solutions of (34) suggests that the 
approximations made in I to arrive at  (34) have become non-uniform in some region 
of the (r, t)-plane. This becomes clear when we observe that as t -+t, from below, 
ho(r, t )  acquires a steep gradient in the vicinity of the point rB at which it first becomes 
multiple valued. When t passes through t,, ah,/& I rB becomes infinite, after which 
ho(r, t )  ‘folds’ over, creating the initial multiple-valued region. By this stage, ho(r, t )  
will no longer provide a uniform approximation to the full solution in the 
neighbourhood of ( rB, tB) ,  since in arriving at  (34) we neglected the highest 
derivatives in r from the full equations (1)-(9). This is no longer justifiable in the 
vicinity of (r,, t ,) ,  where derivatives in r have become large. 

We now demonstrate that a uniform approximation in I can be recovered by 
taking the multiple-valued solution, ho(r, t )  of (34) and replacing the multiple-valued 
region by an appropriate jump discontinuity in ho(r, t ) .  This discontinuous solution 
provides a uniform approximation everywhere except in the neighbourhood of the 
discontinuity. An appropriate scaling of the full equations then provides a leading- 
order theory uniform in the vicinity of the discontinuity. The asymptotic matching 
of the solution in this ‘discontinuity structure ’ region to the outer solution ho(r, t )  
finally determines the conditions which must be satisfied by ho(r,t) across a 
discontinuity. 

We suppose that t > t B  and ho(r, t )  has developed a multiple-valued region. We 
remove this region by the introduction of a jump discontinuity at  r = s( t ) .  Ahead of 
the discontinuity we let h, = hA(t) while behind h, = hB(t). The situation is illustrated 



370 D. J .  Needham and J .  H .  Merkin 

I w 
1 SO) r 

FIGURE 3. A qualitative sketch of the multiple-valued profile of ho(r, t ) ,  

in figure 3, and it is shown in Appendix A that when such a discontinuity is required, 
then 

hB(t)  > h A ( t ) .  (57) 

If the discontinuous solution is to provide a uniform outer approximation to the 
solution of the full equations when E -4 1, then we should be able to re-scale the full 
equations in the vicinity of the discontinuity (so that the highest derivatives in r are 
retained at leading order) and obtain within this thin region a structure for the 
discontinuity which matches with h,(r, t)  as we move out of the region on both 
sides. 

To examine the structure region we first introduce the travelling coordinate y 
defined by y = r -s ( t ) .  The discontinuity is now located at y = 0. Within this 
structure region we must have h of O( 1) to enable matching with h, as y + & co . A 
balancing of terms in equations (1)-(4) then suggests that the appropriate scaled 
variables for this region are 

y = €?j, w = €-%, 2, = €9, (58a) 

with u and r remaining of O(1). 
We look for solutions in this region as asymptotic expansions in the form 

h=A,(? j , t )+  ... asE,Re+O, (58b) 

with similar expansions for u, v, ZZI and 9. 

variables) and expanding gives, at  leading order, 
Substitution of (58b) into the full equations (when written in terms of the scaled 

aa, a$,- aza, aza, 390 - -+- - 0, -+-+s(t)-- - 0, 
ag a Z  a p  a22 aii 
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The boundary conditions (5)-( 8) become at leading order 

37 1 

uo = 6, = vo = 0 on z = 0 for all g. (60e) 

The remaining conditions to be satisfied by (59) are the matching conditions. On 
matching with the outer solution as g+ f co we obtain, after using (20), 

L O  + h,(t), 

So +is ( t )  ~ ( 2 h , ( t )  -z), 

Go + 0, 
Go-+&s(t) z[4z2h,(t)-z3-8h3(t)] ,  

as ij+ fa, where we put h, = h, as #++a, and h, = h, as g+  -co. 
The leading-order structure is now determined by the solution of (59) subject to 

(60) and (61), which is a quasi-steady, free-surface Stokes problem. This problem is 
analytically intractable, but again the required relation between h, and h, can be 
obtained without a full solution. 

On using (59a), (60a) and (60e) it is easily shown that 

1:; (Go-$)dz = $ ( t )  for all fj. 

The function $ ( t )  is determined through conditions (61 a, b )  with hi = h, as 

ds 
dt 

$ ( t )  = is ( t )  ht( t ) - -hh,( t ) .  

The relation between h, and h, is now obtained by evaluating (62) as g+ co using 
(61) with h, = h, and substituting for $ from (63). After some manipulation we arrive 
at the condition 

(64) ds -1  2 3 - B ( h B ( t )  + h A ( t )  h B ( t )  + hi(t)) s, 

which must be satisfied by the jump discontinuity. Condition (64) together with the 
characteristic equations (47)  or (48)  when applied both ahead and behind the 
discontinuity provide three equations to be solved for h,, h, and s. This fixes 
uniquely the location and strength of the discontinuity required to replace the 
multiple-valued region arising in (47)  or (48) ,  after which a structure for the 
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discontinuity is found as the solution of (59)-(61). A point to note from (64) is that, 
since h,, h,, s > 0, every required discontinuity will move downstream. 

5.3. Reformulation as a conservation law 
An interesting reformulation of the outer problem for h, can be made in noticing that 
solutions of (34) with multiple-valued regions replaced by discontinuities which 
satisfy condition (64) are equivalent to  single-valued solutions of the following 
integral conservation law : 

$ [ 1; rh,(r, t )  dr] + [$-‘hi]; = 0, 

for all r1,r2 > 1. On differentiable sections of the profile h,(r,t),  applying the limit 
r l + r 2  in (65) results in (34). At points of discontinuity in the profile, the jump 
conditions obtained from (65) are readily seen to  agree with (64). 

The reformulation in terms of this conservation law enables us to obtain a 
constructive method of fitting discontinuities satisfying (64) into multiple-valued 
sections of (47) or (48). This method is equivalent to the ‘equal area’ rule of Whitham 
(1974). We introduce the new coordinate R = r2.  In terms of R ,  (65) becomes 

[ 11; h,(R, t )  dR + [ZRhi];; = 0, 1 
and a t  differentiable points, 

When the solution of (67) becomes multiple valued i t  must be replaced by an 
appropriate discontinuity. Now, both the multiple-valued and discontinuous 
solutions must satisfy the conservation law (66), and all solutions of (66) satisfy the 
following property (see Appendix B), 

where a(t) = J: h,dR, 

which is the area under the profile of ho. Since both the multiple-valued and 
discontinuous solutions also have the same initial and boundary conditions, they 
must both satisfy (68), i.e. the two profiles must enclose the same area. Hence the 
discontinuity must be inserted into the multiple-valued profile so as to preserve the 
area under the profile. The reformulation has thus produced a convenient analytical 
approach to obtaining ho(r , t ) :  obtain the solution of (67) via the method of 
characteristics and replace multiple-valued regions by discontinuities which satisfy 
the equal area rule. 

The theory presented in this section can be stated concisely in the following result 
(in terms of the coordinate R = r 2 )  : 

Result ( i i )  In  region I a uniform leading-order approximation in R > 1 as E + O  
(with t = O(1)) is obtained as the solution of (67), with multiple-valued regions 
replaced by discontinuities satisfying the ‘equal area ’ rule. 
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We next consider a particular case of the initial-boundary value problem discussed 
here. This describes the response of the film to a sudden change in the driving 
flux. 

6. The response of the film to a flux change 

the initial-boundary-value problem discussed in the previous section, with 
To examine the response of the film to a sudden change in driving flux, we consider 

A- ( t  = 0) 
A( t )  = 

H ( r )  = A-r-i ( r  > l ) ,  

where A _ ,  A, are positive constants. To decide whether the solution h,,(r, t )  remains 
single-valued we view the jump in A(t)  a t  t = 0 as the limiting case of a rapid, but 
smooth transition in the neighbourhood o f t  = 0. We can then appeal to result (i). 

(i) A- > A+ 
This case represents a reduction in the driving flux. An application of result (i) 

shows that ho(r, t )  remains single-valued for all t > 0. The solution is readily obtained 
through (47) and (48) as, 

ho(r , t )  = j" T ( i - r - 3 ) ~  ( ($A: t+l ) f<  r < (#AZt+l) i ) ,  

An examination of (69) shows that the steady profile corresponding to the old flow 
rate is washed away downstream with speed A!($A! t + l)-i, while the steady profile 
corresponding to the new flow rate advances downstream with speed A:($At t +  1)-a. 
They are separated by a spreading transition region which is monotone increasing 
with r .  

A+ r-i (1 < r < (#A: t + l):), 
(69) 

4 1  

A-r-f ( r  2 ($A!t+l)f) .  

(ii) A ,  > A- 
This case represents an increase in the driving flux of the film. An application of 

result (i) shows that the profile becomes multiple valued in finite time. In fact 
t, = 0 and a discontinuity is required immediately at r = 1. The appropriate discon- 
tinuous solution is readily obtained via result (ii) as 

with h, = A- 8-1, h, = A+ s-i and the discontinuity position given by 

s( t )  = ($[A; +A+ A- +A!] t + 1);. 

This completes the solution. Thus there is a discontinuous transition between the 
steady states at the old and new flow rates. This propagates downstream at a 
speed 

B ( t )  = & 4 ~ + A + A - + A 2 ) [ $ ( A ~ + A + A - + A ! ) t +  I]-'. 

The strength of the discontinuity is given by 

h, -h,  = (A,  - A p )  ($[A: + A + A -  + A!] t + 1)-i. 
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7. Instability of the film 
The theory of the previous sections has provided in region I a leading-order 

approximation as e + 0, which is uniform in r > 1 when t is O( 1). The only further 
source of non-uniformity may occur as t + 00. To assess whether or not the theory 
of $6 remains uniform for t % 1 would require obtaining higher-order terms in 
expansions (31) and comparing their behaviour as t + co with that of the leading- 
order terms. Unfortunately, the complexity of the leading-order terms makes this 
approach intractable, except in the case of small-amplitude disturbances to the 
steady film. We can take advantage of this to  obtain an estimate of the uniformity 
as t +  co, since, according to  the leading-order theory the amplitude of the 
disturbances diminishes as t --f 03, and it is reasonable to expect that the final, old- 
age behaviour will be described accurately by a linearized theory. 

We consider the development in I of a small-amplitude disturbance to  the steady 
film h,(r) = A d .  The initial and boundary conditions are then, 

where IpI 4 e is a measure of the amplitude of the disturbance and $ ( r )  is a bounded 
function. A solution to  the full equations (1)-(4) is sought in the form 

h = h,(r) +,8h(r, t ;  E ) ,  (72) 

together with similar expressions for u, w, w and p ,  

I u = u,(r,z)+/3(U,+Ea1+ ...), 

w = w,(r, z )  + p(o, + SB, + . . . ), 
w = w,(r, z )  + P(m, + sW, + . . .), 
P = P A T >  4 +P(P, +€PI + . . .), 

(73) 

where us, w,, w, and p ,  are the steady-state forms of u, v, w and p respectively. The 
first two terms of expansions (73) are readily obtained after substitution into 
equations (1)-(4) and boundary conditions (6)-(8). Finally the substitution into (5) 
for u, w and h from (72) and (73) leads to the following linear equation for h, 

where B = (s) A6Re - (gF) A3 and C = A(:#’) (1 -$A3ReF). The first three terms on 
the left-hand side of (74) are the linearization of (34), with the remaining terms giving 
the correction up to O(e). I n  terms of h, conditions (70) and (71) become 

Equation (74) is simplified on making the transformation 

(76) 
2 -  7 = rsh, 6 = $-Cot ,  7 = logt, 
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where C, = :A2. In terms of f ,  7 and 7, (74) becomes 

375 

The domain of solution is transformed to - co < 7 < co with 1 - C, exp (7 )  < f < 00, 

and conditions (75) become 

7+&&) asT+-co, f >  1 (78a) 

where 

7 = 0 at f = 1 -Go exp ( T ) ,  

4 ( f )  = fP($). 
We look for a solution of (77) in the form 

V ( f , T ; E )  = r # ? , + q l + . . .  . (79) 

On substituting for 7 from (79) into (77) and (78), expanding and equating like 
power of E ,  we obtain a hierarchy of problems to be solved in turn. The first two 
problems are readily solved, to give 

(1 -C, exp ( 7 )  < f < l), 
(f > I) ,  

~ l ( f ,  7 )  = q1(f7 7 )  + q p ( f l ,  71, 

(80) I 7 )  = { 
where 

- 4 ( ~ - 2 2 ~ )  (~$d(t))' -S ( 3 ~ - 2 ~ ) d ( ~ ) ( ~ , - f l ( f e - ' + ~ , ) )  ([ ., 
3 f ( f  exp - 71 + COl2 9 41(5,7) = &f exp [ - 71 + c,)' 
0 (l-C, exp(7) < f < 1). 

Examining (80) and (81) it is seen that 7, and q1 remain bounded for all f and 7 ,  

but in f > 1, 
as r+  00. 

16 C d2(flid(f))7 
9 C, df2 7 )  N - - 

This renders expansion (79) non-uniform when 7 = O(6-l). To obtain a uniform 
expansion when 7 = O(E-') we introduce an outer region with the scaled time 

7* = €7. (82) 
variablc, 

In this region (79), (80) and (81) suggest 7 is O(1). In terms of T * ,  (77) becomes 
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An examination of (83) shows that within this region we have, 
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s(6,7* ,  E )  - r*(& 7 * )  +{terms exponentially small in E } ,  (84) 

where q* satisfies the linear diffusion equation, 

with K = 16C/9C0. A formal solution of (85) is given by 

The asymptotic matching of expansions (79) (as 7+ 00)  and (84) (as 7 * + 0 )  then 
determines D(k) as 

The long-time asymptotics of the film are thus given by (86). 
The analysis of this section has indicated that a non-uniformity in the theory of 

$4 will arise when t 9 1 (with a possible estimate, using (82) and (76), being t of 
0(e1le), after which the old-age development of the film is governed by the linear 
diffusion equation (85) with diffusion coefficient 

4A 
K = - 9F ( ~ - ; A ~ R ~ F ) .  

For Re < 1,  then K > 0, and the disturbance ultimately decays according to (86). In 
this case, the final old-age behaviour is of little interest, with the main development 
determined by the theory of $7. 

However, when Re is 0(1), K may become negative, with the solution (86) 
becoming unbounded. This indicates instability of the steady film. I n  this case the 
film will ultimately diverge from the steady state and possibly develop into a quasi- 
steady ‘wavy’ form. On defining a modified Reynolds number = QQ2Z/gv 
(= R2Q,/2xgv), the condition for instability of the film, K < 0, may be written as 

Re > Q. 

This condition is similar to that obtained by Benjamin (1957) determining the 
stability of a thin liquid film flowing down an inclined plane. 

It should be noted here that when the condition for instability is satisfied, the 
growth rate as determined by (85) becomes unbounded with increasing wavenumber. 
This physically unacceptable result arises since surface-tension effects have been 
neglected due to  the long-wave approximation. However, for large wavenumbers 
(small wavelengths) surface-tension effects will be significant and we expect the 
inclusion of such terms will restore a bounded growth rate. The same problem was 
encountered by Benney (1966) when studying the linearized stability of thin film 
flows down an inclined plane. Gjevik (1970) demonstrated in this case that the effect 
of surface tension does indeed recover a finite growth rate. 
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8. Discussion 
We have considered the axisymmetric thin liquid film formed on a horizontally 

spinning disk. For E Q 1, the asymptotic structure of both the steady and unsteady 
behaviour of the film has been obtained. The steady film has a thin inner region close 
to  the inlet within which rapid adjustment to  the inlet conditions takes place. In the 
main outer region the film thickness is monotone decreasing with distance from the 
inlet. 

In the unsteady case we have examined the response of the steady film to localized 
disturbances and/or changes in the driving flux. Here we again required a thin ‘inlet’ 
region and also a region for t 4 1 in which rapid adjustment to  initial conditions 
occurs. Through matching, these regions provide appropriate ‘ boundary ’ and 
‘initial’ conditions for the leading-order problem in the main region. In  the main 
region we found that it is possible for multiple-valued solutions to develop, and the 
conditions under which this occurs were derived. Such multiple-valued regions will 
not occur in the solution of the full equations, and we interpret this as arising owing 
to  the appearance of a local non-uniformity in the leading-order approximations. I n  
the spirit of Crighton & Scott (1979), it is demonstrated via the method of matched 
asymptotic expansions, that  a uniform approximation is recovered by replacing the 
multiple-valued region by an appropriate jump discontinuity. The discontinuities 
satisfy an ‘equal area’ rule of the type discussed by Whitham (1974). 

Finally we considered whether or not the approximations in the main region 
remain uniform for t D 1. We attempted to  assess this by considering the evolution 
of a small-amplitude disturbance imposed upon the steady film, for which we can 
obtain the first correction to  the leading-order term. This demonstrated that a non- 
uniformity does occur for t % 1. When Re < 1 the old-age behaviour is dominated by 
diffusion. However, for Re of O( 1) it is possible for the film to become unstable. Under 
these conditions we expect that the film will eventually develop into a quasi-steady 
‘wavy’ form. 

To conclude we note that the restriction to axial symmetry will in general be a 
physically realistic assumption, since most thin film flows generated on rotating disks 
are formed by an axisymmetric mechanism. Thus changes to  the flow rate generating 
the film will be uniform in the angular direction, producing essentially axisymmetric 
disturbances to the film. However, this may not be the case when the film is unstable ; 
here non-axisymmetric disturbances may grow spontaneously. 

Appendix A 
Here we show that when a discontinuity is required to remove a multiple-valued 

region, then the discontinuity necessarily satisfies condition (57). Suppose a 
discontinuity is inserted a t  r = s(t), with h, = hA(t) ahead and h, = hB(t) behind, as 
shown in figure 3. We now revert to the (2, t )  characteristic plane. In  this plane the 
discontinuity is located a t  P’(logs(t),t). By hypothesis, this must be a point of 
characteristic intersection, and on one of the characteristics h, = h,, while on the 
other h, = h,. 

Suppose both of these characteristics are from the family (47b), and let E = E,, 6, 
on the characteristic curves for which h, = h,, h, at P, respectively. Since the 
discontinuity must remove the multiple-valued region then we can deduce that 
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f B  fa  log 

FIQURE 4. A sketch in the (5,  t)-plane of the intersecting characteristics s+(t, 6,) and z+(t, EB). 

Furthermore, from (47 b ) ,  the characteristics are monotone increasing functions of 
t ,  which together with (A 1) and the fact that intersection occurs at P leads to the 
inequality 

On evaluating the derivatives through (476) and using (47a) we can re-write (A 2) 
as 

which, via (42), becomes 

Il.ct, t B )  - ~ ( t ,  (A) > O ,  

h, > hA. 

For the two further cases in which the two characteristics are both from the family 
(48b) or one from (47b) and the other from (48b), the result (A 3) follows in the same 
way. 

A geometric representation of inequality (A 2) in the (x, t)-plane is shown in figure 4. 

Appendix B 
For localized initial disturbances, we have, from (42) and (44), 

h,(l,t) = A ( t ) ,  h,(R,t) -A(O)R-f asR+co.  

On letting R, + 00 and R, + 1 in (66) we obtain, after use of (B l) ,  

du 
d t ( t ) + 3 ~ ( 0 ) 3 - ~ ( t ) 3 )  = 0. 

An integration of this expression leads directly to (68). 
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